Vous trouverez ci-dessous une proposition de correction.
Pour certaines questions, il est toutefois possible qu’une (ou plusieurs) autre(s) réponse(s) correcte(s) soit(en)t acceptée(s).

Mathématiques – REPONSES A l’EXERCICE 1

<table>
<thead>
<tr>
<th>I-1-</th>
<th>Entourer la (les) bonne(s) réponse(s) :</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2-</td>
<td>(\lim_{x \to +\infty} f(x) = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En effet : (\frac{\ln x}{x} \xrightarrow{x \to +\infty} 0) et (\lim_{x \to 0} e^x = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-3-</td>
<td>(\Delta : y = 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-4-</td>
<td>(\lim_{x \to 0^+} f(x) = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>En effet : (\ln x \xrightarrow{x \to 0^+} -\infty) donc (\frac{\ln x}{x} \xrightarrow{x \to 0^+} -\infty) et (\lim_{x \to -\infty} e^x = 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| I-5- | Soit \(x > 0 \). Détail du calcul de \(g'(x) \) :
| | \(g'(x) = \frac{x^2 - 1 \times \ln x}{x^2} = \frac{1 - \ln x}{x^2} \) |
| I-6- | Pour tout \(x > 0 \), \(h(x) = \frac{1}{x^2} \frac{\ln x}{x} \) et \(h(x) \) est de signe positif |
| I-7 | \[
| | \begin{array}{c|ccc}
| | x & 0 & e & +\infty \\
| | f'(x) & + & 0 & - \\
| | f(x) & 0 & f(e) & 1 \\
| I-8- | \(y_A = e^1 \) & \(y_A \approx 1,4 \) | | | | |
| I-9- | Entourer la (les) bonne(s) réponse(s) : | A | B | C | D |
| I-10- | Entourer la (les) bonne(s) réponse(s) : | A | B | C | D |
| I-11- | ![Diagramme](image) |
| I-12- | Affirmation A : VRAIE FAUSSE |
| | Affirmation B : VRAIE FAUSSE |
| | Affirmation C : VRAIE FAUSSE |
Mathématiques – REPONSES A l’EXERCICE II

II-1- Entourer la (les) bonne(s) réponse(s) : A B C D

II-2- Entourer la (les) bonne(s) réponse(s) : A B C D

II-3- Entourer la (les) bonne(s) réponse(s) : A B C D

II-4- Entourer la (les) bonne(s) réponse(s) : A B C D

II-5- | x | 2 | 4 | 6 | \(-m\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(G_1 = x))</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

II-6- \(P_1 = \frac{1}{2}\)

II-7- \(E(G_1) = 2 - \frac{m}{2}\)

En effet : \(E(G_1) = 2 \times \frac{1}{6} + 4 \times \frac{1}{6} + 6 \times \frac{1}{6} + (-m) \times \frac{1}{2}\)

II-8- \(E(G_1) \geq 0\) si et seulement si \(m \leq 4\)

II-9- \(P_2 = \frac{1}{6}\)

En effet : \(P_2 = P(G_T = 0) = P((G_1 = 4) \cap (G_2 = -4)) + P((G_1 = -4) \cap (G_2 = 4))\)

\(= P(G_1 = 4) \times P(G_2 = -4) + P(G_1 = -4) \times P(G_2 = 4)\)

\(= \frac{1}{6} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{6}\)

II-10- Loi suivie par \(X\) : \(X \leftrightarrow \mathcal{B}(n, \frac{1}{2})\)

II-11- \(q_n = 1 - \left(\frac{1}{2}\right)^n\)

II-12- \(n_0 = 7\)

En effet : \(q_n > 0,99 \iff 1 - \left(\frac{1}{2}\right)^n > 0,99\)

\(\iff (0,5)^n < 0,01\)

\(\iff n \ln(0,5) < \ln(0,01)\)

\(\iff n > \frac{\ln(0,01)}{\ln(0,5)}\) (car \(\ln(0,5) < 0\))

De plus \(\frac{\ln(0,01)}{\ln(0,5)} \approx 6,64\)
Mathématiques – REPONSES A l’ EXERCICE III

III-1-

<table>
<thead>
<tr>
<th>Affirmation A :</th>
<th>VRAIE</th>
<th>FAUSSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affirmation B :</td>
<td>VRAIE</td>
<td>FAUSSE</td>
</tr>
<tr>
<td>Affirmation C :</td>
<td>VRAIE</td>
<td>FAUSSE</td>
</tr>
<tr>
<td>Affirmation D :</td>
<td>VRAIE</td>
<td>FAUSSE</td>
</tr>
</tbody>
</table>

III-2-

Les points appartenant au plan \mathcal{P} sont : B et C

III-3-

Entourer la (les) bonne(s) réponse(s) : A B C D

III-4-

Un système d’équations paramétriques de la droite \mathcal{D} est :

\[
\begin{align*}
 x &= 1 + t \\
 y &= 1 - t \\
 z &= 1 + 2t
\end{align*}
\]

III-5-

\[
\begin{align*}
 x_K &= \frac{7}{6} \\
 y_K &= \frac{5}{6} \\
 z_K &= \frac{4}{3}
\end{align*}
\]

En effet :

\[
K \in \mathcal{D} \cap \mathcal{P}. \text{ Donc } x_K - y_K + 2z_K - 3 = 0 \text{ et il existe } t \text{ tel que } \begin{align*}
 x_K &= 1 + t \\
 y_K &= 1 - t \\
 z_K &= 1 + 2t
\end{align*}
\]

ce qui donne $(1 + t) - (1 - t) + 2(1 + 2t) - 3 = 0$ soit $6t - 1 = 0$ d’où $t = \frac{1}{6}$

III-6-

$\overrightarrow{BC} \left(1 ; 0 ; -\frac{1}{2}\right)$

III-7-

Equation cartésienne du plan $\mathcal{P}_1 : 2x - z - 1 = 0$

III-8-

Entourer la (les) bonne(s) réponse(s) : A B C D

III-9-

\[
\begin{align*}
 x_H &= \frac{6}{5} \\
 y_H &= 1 \\
 z_H &= \frac{7}{5}
\end{align*}
\]

III-10-

Equation cartésienne du plan $\mathcal{P}_2 : x - y + 2z - 2 = 0$

\[
\mathcal{P}_2 \text{ et } \mathcal{P} \text{ étant parallèles, ils ont mêmes vecteurs normaux. Donc } \mathcal{P}_2 \text{ a une équation de la forme : } x - y + 2z + d = 0
\]

Comme \mathcal{P}_2 passe par $A(1; 1; 1)$, ses coordonnées vérifient l’équation de \mathcal{P}_2.

On a donc : $1 - 1 + 2 + d = 0$. D’où $d = -2$

III-11-

\[
d = \frac{\sqrt{6}}{6}
\]

\[
d = AK \text{ avec } \overrightarrow{AK} = \left(\frac{1}{6} ; -\frac{1}{6} ; \frac{1}{3}\right)
\]

d’où
\[
d = \sqrt{\left(\frac{1}{6}\right)^2 + \left(-\frac{1}{6}\right)^2 + \left(\frac{1}{3}\right)^2} = \sqrt{\frac{1}{36} + \frac{1}{36} + \frac{4}{36}} = \frac{\sqrt{6}}{6}
\]

III-12-

<table>
<thead>
<tr>
<th>Affirmation A :</th>
<th>VRAIE</th>
<th>FAUSSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affirmation B :</td>
<td>VRAIE</td>
<td>FAUSSE</td>
</tr>
<tr>
<td>Affirmation C :</td>
<td>VRAIE</td>
<td>FAUSSE</td>
</tr>
<tr>
<td>Affirmation D :</td>
<td>VRAIE</td>
<td>FAUSSE</td>
</tr>
</tbody>
</table>
Mathématiques – REPONSES A l’ EXERCICE IV

IV-1- Forme algébrique de z_A :

$$z_A = 2 + 2\sqrt{3} \ i$$

Module de z_A :

$$|z_A| = \sqrt{4 + 12} = 4$$

Forme exponentielle de z_A :

$$z_A = 4 \left(\frac{1}{2} + \frac{\sqrt{3}}{2} \ i\right) = 4 e^{i \frac{\pi}{3}}$$

IV-2- Forme algébrique de z_C :

$$z_C = 2 - 2\sqrt{3} \ i$$

Forme exponentielle de z_C :

$$z_C = 4 e^{-i \frac{\pi}{3}}$$

IV-3- Entourer la (les) bonne(s) réponse(s) :

A B C D

IV-4-

Le triangle OAB est équilatéral

Le quadrilatère $ABCD$ est un trapèze

IV-5-

Entourer la (les) bonne(s) réponse(s) :

A B C D

IV-6- $z_H = \frac{1}{2} z_A$ et donc $z_H = 1 + \sqrt{3} \ i$

En effet :

Le triangle OAB étant équilatéral, la hauteur issue de B est aussi la médiane.

Donc H est le milieu du segment $[OA]$

IV-7- Entourer la (les) bonne(s) réponse(s) :

A B C D

IV-8- $\ell_1 = 4$ $\ell_2 = 4\sqrt{a^2 - 1}$

IV-9- Le quadrilatère $OABC$ est un carré si et seulement si $a = \sqrt{2}$

En effet :

$OABC$ est un carré $\iff \ell_1 = \ell_2 \iff 1 = \sqrt{a^2 - 1} \iff a^2 - 1 = 1$

(car deux nombres positifs sont égaux ssi leurs carrés sont égaux)

$\iff a^2 = 2 \iff a = \sqrt{2}$ ou $a = -\sqrt{2}$

or $a > 1$, donc il y a une seule solution $a = \sqrt{2}$

IV-10- (E) admet deux racines complexes non réelles. En effet :

$\Delta = (-4)^2 - 4 \times 1 \times 4 a^2 = 16 (1 - a^2) < 0$

IV-11- $z_1 = 2 + 2i \sqrt{a^2 - 1}$ $z_2 = 2 - 2i \sqrt{a^2 - 1}$

IV-12- $\mathcal{E}' = \{ 0 ; 2 + 2i \sqrt{a^2 - 1} ; 2 - 2i \sqrt{a^2 - 1} \}$
JUSTIFICATIONS AUX QCM ET VRAI-FAUX

EXERCICE I

Question 1
1 − ln x ≥ 0 ⇔ ln x ≤ 1 ⇔ x ≤ e

Question 9
f(1) = e^\frac{ln1}{1} = e^0 = 1 et f'(1) = (1−ln1) \frac{1}{1} e^0 = 1.
Donc T_b a pour équation : y = 1(x−1) + 1 soit y = x.

Question 10
\gamma_c = e^{2\ln 1} = e^{−2\ln z} = \frac{1}{e^{2\ln z}} = \frac{1}{e} = \frac{1}{4}

Question 12
Voir tableau de variations

B) est fausse car pour m = y_A, l'équation admet une solution
C) est fausse car pour m = 1, l'équation n'admet qu'une seule solution (attention, ne pas tenir compte de la limite)

EXERCICE II

Question 1
P(A \cap B) = P(A) − P(A \cap B_b) = 0,4 − 0,3 = 0,1
P(A \cup B) = P(A) + P(B) − P(A \cap B) = 0,4 + 0,6 − 0,1 = 0,9

Question 2
\frac{P(5 \leq X \leq 10)}{P(X > 4)} = \frac{\frac{5}{14}}{\frac{5}{14}} = \frac{5}{14}

Question 3
P(2 \leq X \leq 5) = P(X \leq 5) − P(X \leq 2) = (1 − e^{-5\lambda}) − (1 − e^{-2\lambda}) = e^{-2\lambda} − e^{-5\lambda}

Question 4
P(X > E(X)) = P\left(X > \frac{1}{\lambda}\right) = e^{-\frac{1}{\lambda} \times \lambda} = e^{-1} = \frac{1}{e}

EXERCICE III

Question 1
Ces sont des théorèmes de cours

Question 3
Un vecteur normal est donné par les coefficients de x, y et z dans l’équation cartésienne du plan. Il s’agit donc de \vec{n}_3 ainsi que de \vec{n}_4 qui lui est colinéaire.

Question 8
Coordonnées de \overrightarrow{BC} (1; 0; \frac{1}{2}); donc les seuls vecteurs directeurs possibles de (BC) sont les vecteurs qui lui sont colinéaires, comme par exemple le vecteur de coordonnées (−2; 0; 1). Donc seule la réponse B) convient.

Question 12
Le point H est un point de (BC) donc les droites (HK) et (BC) sont sécantes (en H) et par conséquent coplanaires. (de plus elles sont toutes les deux contenues dans le plan \(P\).
De plus \overrightarrow{HK} = \left(\frac{7}{3}; \frac{5}{6}; 1\right); \overrightarrow{BC} = \left(\frac{4}{3}; \frac{7}{5}; \frac{1}{5}\right)

Donc \overrightarrow{BC}. \overrightarrow{HK} = 1 \times \left(−\frac{1}{3}\right) + 0 \times \left(−\frac{1}{5}\right) + \left(\frac{4}{3}\right) \times \left(−\frac{1}{15}\right) = −\frac{1}{30} + \frac{1}{30} = 0 donc les droites (BC) et (HK) sont orthogonales car leurs vecteurs directeurs le sont.

EXERCICE IV

Question 3
z_D = −z_A = e^{i\pi} \times 4e^{\frac{2\pi}{3}} = 4e^{i\left(\pi + \frac{2\pi}{3}\right)} = 4e^{i\frac{5\pi}{3}} = 4e^{-\frac{i\pi}{3}} (Attention, le module doit être positif !)

Question 7
\overrightarrow{A} = \frac{(\overrightarrow{BC} + \overrightarrow{AD}) \times \overrightarrow{BH}}{2} = \left(\frac{4\overrightarrow{+8}\overrightarrow{x} \times 2\overrightarrow{\sqrt{3}}}{2}\right) = 12\overrightarrow{\sqrt{3}} ; \text{ en effet } z_BH = 1 + i\sqrt{3} = 4 = −3 + i\sqrt{3} \text{ donc } BH = \frac{\sqrt{(-3)^2 + 3^2}}{\sqrt{12}} = 2\sqrt{3}